Sponsored Links

Jumat, 08 Juni 2018

Sponsored Links

Range of a Projectile - quick derivation of the formula - YouTube
src: i.ytimg.com

In physics, assuming a flat Earth with a uniform gravitational field, and no air resistance, projectiles launched with certain initial conditions will have a predictable range .

Berikut ini berlaku untuk rentang yang kecil dibandingkan dengan ukuran Bumi. Untuk rentang yang lebih panjang, lihat spaceflight sub-orbital. Jarak horisontal maksimum yang dilalui oleh proyektil, mengabaikan hambatan udara, dapat dihitung sebagai berikut:

                        d          =                                                 v                                 2                                                         2                g                                                      (                         1                                                           1                                                                                                  2                        g                        Â                                                 y                                                     0                                                                                                                                           v                                                     2                                                                                                 sin                                                     2                                                                                              ?                                                                           Â                                                  )                   sin                   2         ?                  {\ displaystyle d = {\ frac {v ^ {2}} {2g}} \ kiri (1 {\ sqrt {1 {\ frac {2g \ y_ { 0}} {v ^ {2} \ sin ^ {2} \ theta}} \}} \ kanan) \ sin 2 \ theta}   

Where

  • d is the total horizontal distance the projectile goes through.
  • v is the speed at which the projectile is launched
  • g is the acceleration of gravity - usually taken to be 9.81 m/s 2 (near the surface of earth
  • ? is the angle at which the projectile is launched
  • y 0 is the initial height of the projectile

Jika and 0 dianggap nol, yang berarti bahwa objek sedang diluncurkan di tanah datar, kisaran proyektil akan menyederhanakan ke:

                   d        =                                          v                              2                                     g                         without              2        ?             {\ displaystyle d = {\ frac {v2}} {g}} \ without 2 \ theta}  Â


Video Range of a projectile



The ideal projectile movement

The ideal projectile movement states that there is no air resistance and no change in the acceleration of gravity. This assumption greatly simplifies math, and is a close approximation of actual projectile motion in cases where the distance traveled is small. The ideal projectile movement is also a good introduction to the topic before adding complications from air resistance.

Derivation

Sudut movie 45 derajat menggeser proyektil paling jauh secara horizontal. Ini karena sifat segitiga siku-siku. Selain itu, dari persamaan untuk rentang:

                   d        =                                                          v                                  2                                           without                          2              ?                        g                              {\ displaystyle d = {\ frac {v2} \ without 2 \ theta} {g}}}  Â

Kita dapat melihat bahwa rentang akan menjadi maximum ketika nilai                    without              2        ?            {\ displaystyle \ without 2 \ theta}   adalah yang tertinggi (yaitu bila sama dengan 1). Jelas,                     2        ?             {\ displaystyle 2 \ theta}   harus 90 derajat. Artinya,                    ?             {\ displaystyle \ theta}   adalah 45 derajat.

​​â € <â €

Pertama kita memeriksa would have been in hand ( y 0 ) adalah nol. Posisi horizontal proyektil adalah

                   x        (        t        )        =        v        t         cos             ?             {\ displaystyle x (t) = vt \ cos \ theta}  Â

Dalam arah vertikal

             and        (        t        )        =        v        t        without             ?        -                              1             2                         g                t                       2                             {\ displaystyle y (t) = vt \ sin \ theta - {\ frac {1} {2}} gt2}  Â

Kami tertarik pada waktu ketika proyektil kembali ke ketinggian yang sama dengan aslinya. Biarkan t g menjadi kapan pun ketika ketinggian proyektil sama dengan nilai awalnya.

0 = v t sin <? - 1 2 g t 2 {{Annotation encoding = "application/x-tex"> {{displaystyle 0 = vt \ sin \ theta - {\ frac {1} {2}} gt ^ {2}}

Denise self-control:

                   t        =         0             {\ displaystyle t = 0}  Â

atau

                   t        =                                            2              v              without                          ?                        g                              {\ displaystyle t = {\ frac {2v \ sin \ theta} {g}}}  Â

tetapi t = T = waktu penerbangan

                     T        =                                            2              v              without                          ?                        g                              {\ displaystyle T = {\ frac {2v \ sin \ theta} {g}}}  Â

Solusi pertama sesuai dengan kapan proyektil pertama kali diluncurkan. Solusi kedua adalah solusi yang berguna untuk menentukan jangkauan proyektil. Memasukkan nilai ini untuk ( t ) that dalam hasil persamaan horizontal

                   x        =                                            2                            v                                  2                                           cos                          ?                           without                          ?                        g                              {\ displaystyle x = {\ frac {2v2} \ cos \ theta \, \ without \ theta} {g}}}  Â

Menerapkan identifies trigonometry

                   without             (        x             and        )        =        without             x                 cos             and         Ã,              Ã,        without             and                 cos             x             {\ displaystyle \ sin (x y) = \ sin x \, \ cos and \ \ \ sin and \, \ cos x}  Â

Jika x dan y sama,

                   without              2        ?        =         2        without             ?                 cos             ?             {\ displaystyle \ without 2 \ theta = 2 \ without \ theta \, \ cos \ theta}  Â

memungkinkan kami menyederhanakan solusi

                   d        =                                                          v                                  2                                           without                          2              ?                        g                              {\ displaystyle d = {\ frac {v2} \ without 2 \ theta} {g}}}  Â

Perhatikan bahwa ketika (? ) adalah 45 °, solusinya menjadi

                           d                      max                         =                                          v                              2                                     g                              {\ displaystyle d _ {\ max} = {\ frac {v2}} {g}}}  Â

​​â € <â €

Sekarang kita akan mengizinkan ( y 0 ) menjadi nol. Persamaan gerak kami dried up

                   x        (        t        )        =        v        t         cos             ?             {\ displaystyle x (t) = vt \ cos \ theta}  Â

dan

             and        (        t        )        =                and                       0                              v        t        without             ?        -                              1             2                         g                t                       2                             {\ displaystyle and (t) = y_ {0} vt \ without \ theta - {\ frac {1} {2}} gt2}  Â

Follow kita memecahkan ( t ) dalam kasus di mana posisi ( y ) dari proyektil adalah nol (karena ini adalah bagaimana kita mendefinisikan tinggi awal kita untuk memulai dengan)

              0        =                and                       0                              v        t        without             ?        -                              1             2                         g                t                       2                             {\ displaystyle 0 = y_ {0} vt \ without \ theta - {\ frac {1} {2}} gt2}  Â

Surely denounced menerapable rumus kadrat kita menemukan second solusi untuk saat itu. Beeberapa langkah setelah to handle aljabar

                   t        =                                            v              without                          ?                        g                         Ã,  ±                                                         v                                  2                                                         without                                  2                                                       ?                          2              g                             and                                  0                                                      g                              {\ displaystyle t = {\ frac {v \ sin \ theta} {g}} \ pm {\ frac {\ sqrt {v ^ 2 \ without 2 \ theta 2gy_ {0}}} {g}}}  Â

Akar kuadrat harus berupa bilangan positif, dan karena kecepatan dan sinus dari sudut peluncuran juga dapat diasumsikan positif, solusi dengan waktu yang lebih besar akan terjadi ketika positif tanda plus atau minus digunakan. Jadi, solusinya adalah

                   t        =                                            v              without                          ?                        g                                                                               v                                  2                                                         without                                  2                                                       ?                          2              g                             and                                  0                                                      g                              {\ displaystyle t = {\ frac {v \ sin \ theta} {g}} {\ frac {\ sqrt {v ^ 2 \ sin ^ {2} \ theta 2gy_ {0}}} {g}}}  Â

Memecahkan rentang continues to burn

                   d        =                                            v              cos                          ?                        g                                   [                      v            without                      ?                                                                   v                                      2                                                                 without                                      2                                                               ?                              2                g                                   and                                      0                                                                                ]                     {\ displaystyle d = {\ frac {v \ cos \ theta} {g}} \ kiri [v \ sin \ theta {\ sqrt {v ^ { 2} \ sin2 \ theta 2gy_ {0}}} \ right]}  Â

atau, ekuivalen

                   d        =                                          v                              2                                                   2              g                                               (                      1                                                   1                                                                                          2                      g                       Ã,                                                and                                                  0                                                                                                                                v                                                  2                                                                                        without                                                  2                                                                                       ?                                                                       Ã,                                              )                without              2        ?             {\ displaystyle d = {\ frac {v2} {2g}} \ kiri (1 {\ sqrt {1 {\ frac {2g \ y_ {0}} {v2 \ sin2 \ theta}} \}} \ kanan) \ without 2 \ theta}  Â

Untuk memaksimalkan jangkauan pada ketinggian apa pun

                   ?        =        arccos                                                                2                g                                   and                                      0                                                                                v                                      2                                                                             2                g                                   and                                      0                                                                2                                v                                      2                                                                                          {\ displaystyle \ theta = \ arccos {\ sqrt {\ frac {2gy_ {0} v2} {2gy_ {0} 2v2 }}}}}  Â

Memeriksa batas sebagai                            and                       0                              {\ displaystyle y_ {0}}  mendekati 0

                           lim                                   and                              0                                       ->             0                          arccos                                                                2                g                                   and                                      0                                                                                v                                      2                                                                             2                g                                   and                                      0                                                                2                                v                                      2                                                                                     =                               ?             4                             < {\ displaystyle \ lim _ {y_ {0} \ ke 0} \ arccos {\ sqrt {\ frac {2gy_ {0} v2} {2gy_ {0} 2v2}}} = {\ frac {\ pi} {4}}}  Â

Sudut tumbukan

Sudut? di mana tanah proyektil diberikan oleh:

                   so             ?        =                                            -                             v                                    and                                            (                             t                                  d                                             )                                                     v                                   x                                            (                             t                                  d                                             )                                     =                                                         v                                  2                                                         without                                  2                                                       ?                          2              g                             and                                  0                                                                    v              cos                          ?                                          {\ displaystyle \ tan \ psi = {\ frac {-v_ {y} (t_ {d})} {v_ {x} (t_ {d} )}} = {\ frac {\ sqrt {v2} \ sin2 \ theta 2gy_ {0}}} {v \ cos \ theta}}}  Â

Untuk rentang maksimum, ini menghasilkan persamaan berikut:

                            so                       2                             ?        =                                            2              g                             and                                  0                                                                      v                                  2                                                                 v                              2                                                  =          C             1             {\ displaystyle \ tan2 \ psi = {\ frac {2gy_ {0} v2} {v2}} = C 1}  Â

Tulis ulang solusi asli untuk ?, Kita mendapatkan:

                            so                       2                             ?        =                                            1              -                             cos                                  2                                                       ?                                                     cos                                  2                                                       ?                                     =                                          v                              2                                                   2              g                             and                                  0                                                                      v                                  2                                                                  =                              1                           C                          1                                          {\ displaystyle \ tan2 \ theta = {\ frac {1- \ cos ^ 2 \ theta} {\ cos ^ 2} \ theta}} = {\ frac {v2}} {2gy_ {0} v2}} = {\ frac {1} {C 1}}}  Â

Mengalikan denies a persuasive untuk (tan?) ^ 2 members:

                            so                       2                             ?                         so                       2                             ?        =                                            2              g                             and                                  0           Â

Source of the article : Wikipedia

Comments
0 Comments